

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In Further Mathematics (9FM0) Paper 3B: Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 9FM0_3B_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

AL FM Stats 1 1906 Mark Scheme Final

Qu	Scheme	Marks	AO
1(a)	[Let $X = \text{no. of prizes Andreia wins}] X \sim B(40, 0.02)$	M1	3.3
	[Require $P(X \ge 3) = 1 - P(X \le 2)$] = 0.04567 awrt 0.0457	A1	1.1b
		(2)	
(b)	[Let $Y = \text{no. of the bar when Barney wins}] Y \sim \text{NegBin}(3, 0.02)$	M1	3.3
	$[P(Y=40)=] {39 \choose 2} \times 0.02^2 \times 0.98^{37} \times 0.02$	M1	3.4
	$= 0.0028071 \text{ awrt } \underline{0.00281}$	A1	1.1b
		(3)	
(c)	$E(Y) = \frac{3}{0.02} = \underline{150}$	B1	1.1b
		(1)	
		(6 m	arks)
	Notes		
(a)	M1 for selecting a suitable model i.e. B(40, p) where p is any probability Written or used, may be implied by a correct ans or 0.037429 from I A1 for awrt 0.0457 (correct answer only 2/2)	P(X=3)	
(b)	1 st M1 for selecting a suitable model (NB(3, 0.02)) May be implied by a correct expression	_	ession
SC	$p \neq 0.02$ Allow prob of the form $\binom{39}{2} p^3 (1-p)^{37}$ where $0 score$	s M0M1	
	A1 for awrt 0.00281 (accept awrt 2.81×10 ⁻³) [correct answer with no work	ting score	s 3/3]
(c)	B1 for 150		

Qu	Scheme	Marks	AO
2(a)	{Let $C = \text{no of calls in a 20 min period}} C \sim \text{Po}()$	M1	3.3
	80 calls per 4-hour period gives $\frac{20}{3}$ per 20 mins i.e. $C \sim \text{Po}(\frac{20}{3})$	M1	3.4
	$[P(C > 4)] = 1 - P(C \le 4)$ = 0.79437 awrt <u>0.794</u>	A1 (3)	1.1b
(b)	$\{X = \text{ no. of 5 min periods with no calls } X \sim B(4, e^{-\frac{5}{3}})$ P(X = 3) = 0.02186125 awrt 0.0219	M1 A1	3.3 1.1b
(c)	P(exactly one call) $e^{-\frac{5}{3}} \times \frac{5}{3}$ or $e^{-5} \times 5$	(2) M1	2.1
	P(exactly one call in each break) = $\left(e^{-\frac{5}{3}} \times \frac{5}{3}\right) \times \left(e^{-5} \times 5\right)$	M1	1.1b
	= 0.0106052 awrt 0.0106	A1	1.1b
		(3)	
	Notes	(8 mark	<u>.s)</u>
(a)	1 st M1 for selecting a Poisson model – written or used. May be implied by 2 nd 1	M1 or a c	orrect
(a)	Answer.	vii oi a c	offect
	2^{nd} M1 for the correct Poisson Po $(\frac{20}{3})$ or Po (6.67) or better seen		
	and writing or using 1 -	- P(<i>C</i> ≤	4)
	A1 for awrt 0.794 (correct ans with no incorrect working scores 3/3)	` `	,
(b)	M1 for selecting a correct model B(4, 0.189) or better (calc: 0.188875) A1 for using the model to get awrt 0.0219 (correct ans with no incorrect work	king score	es 2/2)
(c)	1 st M1 for <u>a</u> correct prob of 1 call (expressions in e or values) (allow 0.31479 or awrt 0.315 <u>or</u> 0.033689 or awrt 0.0337)		
	2 nd M1 for a correct probability statement or expression. E.g. $P(S = 1 S \sim Po(\frac{5}{3})) \times P(T = 1 T \sim Po(5))$		
SC	e.g. $F \sim \text{Po}(\lambda)$ used in (b) to find $P(F = 0)$ Then if we see $Y \sim \text{Po}(3\lambda)$ and statement $P(F = 1) \times P(Y = 1)$ award MOM1		
	A1 for awrt 0.0106 (correct ans with no incorrect working scores 3/3)		

Qu	Scheme	Marks	AO
3.	{ Let $X =$ the number when the spinner is spun} $\mu = 3$	B1	1.1b
	$\left[E(X^2) = \right] 0.3 + 4 \times 0.1 + 9 \times 0.2 + 16 \times 0.1 + 25 \times 0.3 [= 11.6 \text{ or } \frac{58}{5}]$	M1	1.1b
	$\sigma^2 \left[= 11.6 - 3^2 = \right] \mathbf{\underline{2.6}}$	A1	1.1b
	$\bar{X} \approx N \left("3", \sqrt{\frac{"2.6"}{80}}^2 \right)$	M1	2.1
		A1ft	1.1b
	$P(\bar{X} > 3.25) = [P(Z > 1.3867) =]0.0827589(calc)$ awrt <u>0.0828</u>	A1	3.4
		(6 mark	(s)
	Notes		
	B1 for stating or using mean $= 3$		
	1^{st} M1 for using the given model to attempt E(X^2) with at least 3 correct pr	oducts se	en
	1 st A1 for Var(X) = 2.6 or $\sigma = \sqrt{2.6} = 1.6124$ (awrt 1.61)		
ALT	Use of pgf (B1 when mean = 3 seen) (M1 when correct $G''(t)$ seen with atter	npt at G"	(1))
	$G(t) = 0.3t + 0.1t^2 + 0.2t^3 + 0.1t^4 + 0.3t^5$		
	$G'(t) = 0.3 + 0.2t + 0.6t^2 + 0.4t^3 + 1.5t^4$		
	$G''(t) = 0.2 + 1.2t + 1.2t^2 + 6t^3$ leading to $G''(1) = 8.6$		
	2^{nd} M1 for use of CLT – must use \overline{X} and normal $\underline{\text{or}}$ sight of N $\left("3", \sqrt{\frac{"2.6"}{80}} \right)$	$\left(\frac{1}{2}\right)$ with a	any letter
	2 nd A1ft for a correct mean and variance, ft their 3 and their 2.6		
	This M1A1ft may be implied by sight of correct st. dev. used in a state leading to $P(Z > 1.39)$ Must see correct use of Z	ndardisat	ion
	NB $\frac{2.6}{80} = 0.0325$ and $\sqrt{\frac{2.6}{80}} = 0.18027$ so allow e.g. N(3, awrt (0)	$(.180)^2$	
	3 rd A1 for using the normal model to find probability awrt 0.0828		
ALT	Use of $\sum X$ (If see clear attempt at P($\Sigma X > 260$) condone P($\Sigma X > 260.5$) the	n:	
	2 nd M1 for ΣX ~ N() or any letter ~N("240", $\sqrt{"2.6" \times 80}^2$)		
	2^{nd} A1ft for mean = "3"×80 = 240 and variance = "2.6"×80 = 208		
	May see P($\Sigma X > 260.5$) = 0.077597 but it will only score 2 nd M1 2 nd A1ft and $\Sigma X = 0.077597$	and 3^{rd} A	0

Qu	Scheme	Marks	AO
4 (a)	[$T = \text{no. of oak trees in a square}$] $T \sim \text{Binomial}$	M1	3.3
	$T \sim B(6, p)$	A1	1.1b
		(2)	
(b)	Expected frequency for 6 is less than 5 so pool: new $E_i = 13.08$	M1	2.1
	$ \begin{vmatrix} \frac{(O_i - E_i)^2}{E_i} & 0.051 & 2.51 & 0.0654 & 3.84 & 1.85 \\ \hline \frac{O_i^2}{E_i} & 4.521 & 29.617 & 21.805 & 7.599 & 24.771 \end{vmatrix} \sum \frac{(O_i - E_i)^2}{E_i} = 8.313 $	M1,A1	1.1b x2
		D1 D16	1 11 0
	p needed estimating ($\hat{p} = 0.55$) so $v = 5 - 2 = 3$; cv 7.815	B1,B1ft	1.1b x2
	Significant result, so Liam's <u>model is not suitable</u>	M1,A1	1.1b2.2b
		(7)	2.2
(c)	1 -	M1	3.3
	Correct expression for s or t using Poisson	M1	3.4
	s = 17.67 and $t = 9.62$	A1,A1	1.1b x2
(J)	II. Deigner is a good 64 (for me of cells trace non account)	(4)	
(d)		B1	2.5
	H ₁ : Poisson is not a good fit (for no. of oak trees per square)	(1)	
(e)	No pooling needed so degrees of freedom is $6 - 2 = 4$	B1 (1)	1.1b
(6)	Critical value is 9.488 (accept 9.49)	B1	1.10 1.1a
	Not significant so Poisson (or Simone's) model is suitable	B1	2.2b
	The significant so I disson (of Simone s) model is suitable	(3)	2.20
(f)	Poisson model has better fit so suggests that oak trees occur at random Or binomial suggests deliberately planted or cultivated	B1	2.2b
	Therefore the forest is likely to be wild not cultivated	B1	3.5a
		(2)	
		(19 m	narks)
	Notes		

- (a) M1 for choosing binomial A1 for B(6, p) can be in words and allow B(6, 0.55)
- (b) 1st M1 for pooling last 2 classes (E_i = 13.08 but accept 13.1)
 2nd M1 for at least 3 correct values or expressions. Either row to at least 2 sf
 1st A1 for awrt 8.31 (8.31 gets 3/3) [NB no pooling gives awrt 16.8458.. and implies M0M1A0]
 1st B1 for 3 degrees of freedom 2nd B1ft for critical value of 7.815 (e.g. v = 4 use 9.488)
 3rd M1 for a correct conclusion (non-contextual ignore any contradictory contextual comments for this mark) based on their cv and their test statistic

 This mark see he implied by a fully correct solution and in a with correct contextual conclusion.

This mark can be implied by a fully correct solution ending with correct contextual conclusion 2^{nd} A1 for correct conclusion in context with **all other marks scored**

- (c) 1^{st} M1 for selecting a correct model Po(3.3) [Allow Po(awrt 3.3)] 2^{nd} M1 for use of the model with an expression or correct value for *s* or *t* 1^{st} A1 for one correct 2^{nd} A1 for both correct (allow awrt 2dp)
- (d) B1 for correct hypotheses must mention Poisson: use of Po(3.3) is B0
- (e) 1^{st} B1 for correct degrees of freedom v = 4 only 2^{nd} B1 for selecting correct critical value (9.488 only) 3^{rd} B1 for not significant conclusion based on 8.749 vs their cv (condone use of Po(3.3) here)
- (f) 1st B1 for choosing Poisson as better <u>or</u> stating Poisson implies wild <u>or</u> bino'l implies cultivated 2nd B1 (dep on rejecting bin and accepting Poisson) for clearly stating woodland is wild If the tests give the same results then 2nd B0 automatically

Qu	Scheme	Marks	AO
5(a)	$H_0: \lambda = 2.5 \text{ (or } \mu = 7.5)$ $H_1: \lambda \neq 2.5 \text{ (or } \mu \neq 7.5)$	B1	2.5
	[$X = \text{no. of accidents in a 3-month period}$] $X \sim \text{Po}(7.5)$	M1	3.3
	$P(X \le 2) = 0.0203 \text{ (calc: } 0.020256) $ { or $P(X \le 3) = 0.0591$ }		
	$P(X \le 13) = 0.9784 \text{ so } P(X \ge 14) = 0.0216 \text{ (calc: } 0.0215646)$	M1	3.4
	$\{ \text{or P}(X \ge 15) = 0.0103 \}$		
	Giving Critical region of: $X \leq 2$	A1	1.1b
	$X\geqslant 14$	A1	1.1b
(b)	$[0.0203 + 0.0216] = \text{awrt } \underline{0.0419}$ or (calc: 0.041821366 awrt $\underline{0.0418}$)	(5) B1ft (1)	1.2
(c)	[Let $M = \text{no of } 3\text{-month periods with a significant result}]$		
	$M \sim B(8, \text{``0.0419''})$	M1	3.3
	$[P(M \geqslant 2)] = 1 - P(M \leqslant 1)$	M1	1.1b
	[=1-0.9584]		
	=0.04153(calc: 0.041394) [0.04139~ 0.04154]	A1cso	1.1b
		(3)	
(d)	$Y \sim Po(6.3)$	M1	3.3
	P(Type II error) = P($3 \le Y \le 13$) or P($Y \le 13$) – P($Y \le 2$)	M1	3.4
	[=0.99451470.049846] = 0.9446 awrt 0.945	A1	1.1b
	= 0.9446 awrt 0.945	(3)	1.10
		(12 ma	rks)
	Notes		/
(a)	B1 for both hypotheses in terms of λ or μ (either way around) 1^{st} M1 for selecting the correct Po model. Sight or use of Po(7.5) may be imp 2^{nd} M1 for using the correct model to find one of these probs with correct labe 1^{st} A1 for one end correct Allow any letter, even $CR \leq 2$ or set notation 2^{nd} A1 for a fully correct CR Can have $X < 3$ and $X > 13$ etc	el (2sf or be	etter)
(b)	B1ft for awrt 0.0419 or awrt 0.0418 or ft addition of their two probs provided both are $0 < \text{prob} < 0.025$ (aw	vrt 3sf)	
(c)	1 st M1 for selecting a correct binomial model, ft their answer to part (b) 2^{nd} M1 for a correct probability statement of $1 - P(M \le 1)$ dep on <u>a</u> binomi A1cso for answer in range [0.04139, 0.04154] dep on use of B(8, "0.0419")		
(d)	 1st M1 for selecting a Po(6.3) model 2nd M1 for a correct probability statement using their Poisson model and their may have just one tail. A1 for awrt 0.945 	CR in (a)	which

Qu	Scheme	Marks	AO
6 (a)	$G(1) = 1 \implies k \ln 2 = 1$ so $k = \frac{1}{\underline{\ln 2}}$	B1	2.1
(b)	$\left\{ G(t) = \frac{1}{\ln 2} \left[\ln 2 - \ln(2 - t) \right] \right\} \implies G'(t) = \frac{1}{\ln 2} \left[\frac{1}{2 - t} \right] \text{ or } \frac{1}{\ln 2} (2 - t)^{-1}$	(1) M1 A1	2.1 1.1b
	$[E(X) =] G'(1) = \frac{1}{\ln 2}$	A1	1.1b
	$G''(t) = \frac{1}{\ln 2} \times \left[\frac{1}{(2-t)^2} \right]$	M1 A1	2.1 1.1b
	$Var(X) = G''(1) + G'(1) - \left[G'(1)\right]^2 = \frac{1}{\ln 2} + \frac{1}{\ln 2} - \left(\frac{1}{\ln 2}\right)^2$	M1	2.1
	$=\frac{1}{\ln 2}\left(2-\frac{1}{\ln 2}\right)$	A1	1.1b
(c)	$P(X = 3) = \text{coefficient of } t^3 \text{ by Maclaurin need } G'''(0)$	(7) M1	3.1a
	$G'''(t) = \frac{1}{\ln 2} \frac{2}{(2-t)^3}$	A1ft	1.1b
	$P(X=3) = \frac{G'''(0)}{3!}$	M1	3.2a
	$= \frac{\frac{1}{4 \ln 2}}{6} = \frac{1}{24 \ln 2} = 0.0601122 \text{ awrt } \underline{0.0601}$	A1 (4)	1.1b
	6 24 in 2	(12 m	arks)
	Notes	(== ===	
(a)	B1 for finding k (must be exact)		
(b)	1^{st} M1 for an attempt to differentiate $G(t)$ e.g. $A(2-t)^{-1}$ (o.e.)		
	1 st A1 for a correct first derivative (condone <i>k</i> or use of $\frac{1}{\ln 2}$ = awrt 1.44)		
	2^{nd} A1 for correct E(X) or G'(1) (allow awrt 1.44 calc: 1.442695but not k)	seen any	where
	2^{nd} M1 for attempting second derivative (ft their $G'(t)$)		
	3^{rd} A1 for a correct 2^{nd} derivative (condone k or use of $\frac{1}{\ln 2}$ = awrt 1.44)		
	3^{rd} M1 for a correct method for $Var(X)$ (some substitution into the correct formula)	la)	
	4^{th} A1 for $\frac{1}{\ln 2} \left(2 - \frac{1}{\ln 2} \right)$ o.e. but must simplify i.e. collect like terms		
	[Mark final answer – penalise incorrect NB 0.8040211 is A0 unless exact answer seen	log work	etc]
(c)	1 st M1 for a suitable strategy to solve the problem (finding link with Maclaurin Need mention of coefficient of t^3 and $[G'''(t)]$ or $G'''(0)$ (condone $G'''(0)$)		
	1st A1ft for 3^{rd} derivative, ft their 2^{nd} derivative in (b) (provided $G''(t)$ not constant.		
	Correct $G'''(t)$ or $G'''(0)$ scores 1^{st} M1 1^{st} A1ft	,	
	2 nd M1 for translating Maclaurin to probability (a correct expression)		
	2^{nd} A1 for $\frac{1}{24 \ln 2}$ or awrt 0.0601		

ALT	Log series 1 st M1 attempt to write $G(t)$ in suitable form as far as: $k[\ln 2 - \ln(2[1 - \frac{t}{2}])]$
	$1^{\text{st}} A1 \text{ reaching } -k \ln(1-\frac{t}{2})$
	2^{nd} M1 use of $-\ln(1-x)$ series (some correct substitution) NB $G(t) = \frac{1}{\ln 2} \left(\frac{t}{2} + \frac{t^2}{8} + \frac{t^3}{24} + \dots \right)$

Qu	Scheme	Marks	AO
'(a)(i)	$[B \sim \text{Geo}(\frac{1}{3})] P(B=4) = (\frac{2}{3})^3 \times \frac{1}{3}$	M1	3.3
	$= \frac{8}{81}$ $P(B \le 5) = 1 - P(B > 5) \underline{\text{or}} 1 - \left(\frac{2}{3}\right)^{5}$ $= \frac{211}{81}$	A1	1.1b
(ii)	$P(B \le 5) = 1 - P(B > 5) \underline{\text{or}} 1 - \left(\frac{2}{3}\right)^5$	M1	2.1
	$=\frac{211}{243}$	A1	1.1b
(b)	$E(B^2) = Var(B) + [E(B)]^2$	M1 $M1$	2.1
	From formula booklet: $E(B) = \frac{1}{\frac{1}{3}} = 3$ and $Var(B) = \frac{1 - \frac{1}{3}}{\left(\frac{1}{3}\right)^2} = 6$	B1	1.1b
	So $E(B^2) = 6 + 9 = \underline{15}$	A1 (3)	1.1b
(c)	[Let $R = \text{no.}$ of the spin when it first lands on red] $X = R \sim \text{Geo}(\frac{2}{3})$	M1	3.3
	Require $E(e^X) = \sum_{x=1}^{\infty} e^x \left(\frac{1}{3}\right)^{x-1} \frac{2}{3}$	M1	3.1a
	$= \frac{2e}{3} \sum_{x=1}^{\infty} \left(\frac{e}{3}\right)^{x-1}$	M1	2.1
	$= \frac{2e}{3} \times \frac{1}{1 - \frac{e}{3}} \underline{\text{or}} \frac{2e}{3 - e}$	A1	1.1b
	$E(e^X) = 19.297$ {> 15 = $E(B^2)$ } so Tamara should choose red since it has the greater expected score	A1	2.2a
		(5)	marks)
	Notes	(12	mar Ks)
(a)(i)	M1 for selecting the correct model i.e. $Geo(p)$ (May be implied by a correct A1 for $\frac{8}{81}$ (= 0.098765 accept awrt 0.0988)	t expression	on)
(ii)	M1 for a suitable strategy to use the geometric model to find a correct expr A1 for $\frac{211}{243}$ (= 0.868312accept awrt 0.868)	ression	
(b)	M1 for a suitable strategy to find $E(B^2)$ [allow $G''(1) + G'(1)$]		
	B1 for use of the correct formulae to find $E(B) = 3$ and $Var(B) = 6$ or $G''(A1)$ for 15	1) = 12	
SC	Formula for $E(B^2)$ Allow M1B1A0 for $E(B^2) = \frac{2-p}{p^2}$ (o.e.)		

Qu7	Notes
(c)	1 st M1 for choosing a suitable geometric model (sight of Geo($\frac{2}{3}$) or at least 3 correct
	probabilities) 2^{nd} M1 for realising the need for appropriate expected value and using E(g(X)) [Need sum and f(x)] NB simply finding $e^{E(X)} = e^{1.5} = \text{awrt } 4.48 \text{ is M0}$ and probably no more marks. 3^{rd} M1 for a suitable strategy to turn the expression into a sum that can be found 1^{st} A1 for correct use of sum to infinity of geometric series 2^{nd} A1 for interpreting the outcome of the calculations in terms of a solution to the problem must choose red and see the awrt 19.3 (and allow ft of their E(B^2) < 19)